Michael John Willatt


15. M. J. Willatt, A. Alavi,
The direct role of nuclear motion in spin-orbit coupling in strongly correlated spin systems
JCP, 160, 234103 (2024); https://doi.org/10.1063/5.0209702
14. S. N. Pozdnyakov, M. J. Willatt, A. P. Bartok, C. Ortner, G. Csanyi, M. Ceriotti,
Comment on "manifolds of quasi-constant SOAP and ACSF fingerprints and the resulting failure to machine learn four-body interactions" [J. Chem. Phys. 156, 034302 (2022)]
JCP, 157, 177101 (2022); https://doi.org/10.1063/5.0088404
13. J. Nigam, M. J. Willatt, M. Ceriotti,
Equivariant representations for molecular Hamiltonians and N-center atomic-scale properties,
JCP, 156, 014115 (2022); https://doi.org/10.1063/5.0072784
12. F. Musil, M. Veit, A. Goscinski, G. Fraux, M. J. Willatt, M. Stricker, T. Junge, M. Ceriotti,
Efficient implementation of atom-density representations,
JCP, 154, 114109 (2021); https://doi.org/10.1063/5.0044689
11. S. N. Pozdnyakov, M. J. Willatt, A. P. Bartok, C. Ortner, G. Csanyi, M. Ceriotti,
Incompleteness of atomic structure representations,
PRL, 125, 166001 (2020); https://doi.org/10.1103/PhysRevLett.125.166001
10. G. Trenins, M. J. Willatt, S. C. Althorpe,
Path-integral dynamics using curvilinear centroids,
JCP, 151, 054109 (2019); https://doi.org/10.1063/1.5100587
9. A. Grisafi, D. M. Wilkins, M. J. Willatt, M. Ceriotti,
Atomic-scale representation and statistical learning of tensorial properties,
Machine Learning in Chemistry: Data-Driven Algorithms, Learning Systems, and Predictions (2019); https://doi.org/10.1021/bk-2019-1326.ch001
8. M. J. Willatt, F. Musil, M. Ceriotti,
Atom-density representations for machine learning,
JCP, 150, 154110 (2019); https://doi.org/10.1063/1.5090481
7. F. Musil, M. J. Willatt, M. Ceriotti,
Fast and accurate uncertainty estimation in chemical machine learning,
JCTC, 15, 906 (2019); https://doi.org/10.1021/acs.jctc.8b00959
6. M. J. Willatt, F. Musil, M. Ceriotti,
Feature optimization for atomistic machine learning yields a data-driven construction of the periodic table of the elements,
PCCP, 20, 29661 (2018); https://doi.org/10.1039/C8CP05921G
5. M. Ceriotti, M. J. Willatt, G. Csanyi,
Machine learning of atomic-scale properties based on physical principles,
Handbook of Materials Modeling (2018); https://doi.org/10.1007/978-3-319-42913-7_68-1
4. M. J. Willatt, M. Ceriotti, S. C. Althorpe,
Approximating Matsubara dynamics using the planetary model: tests on liquid water and ice,
JCP, 148, 102336 (2018); https://doi.org/10.1063/1.5004808
3. M. J. Willatt,
Matsubara dynamics and its practical implementation,
PhD thesis (2017); https://doi.org/10.17863/CAM.13644
2. T. J. H. Hele, M. J. Willatt, A. Muolo, S. C. Althorpe,
Communication: Relation of centroid molecular dynamics and ring-polymer molecular dynamics to exact quantum dynamics,
JCP, 142, 191101 (2015); https://doi.org/10.1063/1.4921234
1. T. J. H. Hele, M. J. Willatt, A. Muolo, S. C. Althorpe,
Boltzmann-conserving classical dynamics in quantum time-correlation functions: Matsubara dynamics,
JCP, 142, 134103 (2015); https://doi.org/10.1063/1.4916311